2. Kementerian Kesehatan Republik Indonesia. Riset Kesehatan Dasar 2013. Jakarta: Kemenkes RI; 2013.
3. Bener A, Yousafzai MT, Darwish S, Al-Hamaq AOAA, Nasralla EA, Abdul-Ghani M. Obesity Index That Better Predict Metabolic Syndrome: Body Mass Index, Waist Circumference, Waist Hip Ratio, or Waist Height Ratio. Journal of Obesity; 2013. 2013:269038. doi: 10.1155/2013/269038
4. Pan W, Yeh W. How to define obesity? Evidencebased multiple action points for public awareness, screening, and treatment: an extension of Asian-Pacific recommendations. Asia Pac J Clin Nutr 2008; 17 (3): p. 370-374.
5. Low S, Chin MC, Ma S, Heng D, Deurenberg-Yap M. Rationale for Redefining Obesity in Asians. Ann Acad Med Singapore 2009; 38: p. 66-74.
6. International Diabetes Federation [IDF]. The IDF consensus worldwide definition of the metabolic syndrome. Belgia (BE): IDF 2006.
7. Chackrewarthy S, Gunasekera D, Pathmeswaren A, Wijekoon CN, Ranawaka UK, Kato N, Takeuchi F. A Comparison between Revised NCEP ATP III and IDF Definitions in Diagnosing Metabolic Syndrome in an Urban Sri Lankan Population: The Ragama Health Study. ISRN Endocrinology 2013.
8. Sawant A, Mankeshwar R, Shah S, Raghavan R, Dhongde G, Raje H, D’souza S, Subramanium A, Dhairyawan P, Todur S. Prevalence of metabolic syndrome in urban India. Journal of Cholesterol 2011.
9. Refdanita, Damayanti E, Dwiriani CM, Sumantri C, Effendi AT. 2017. Hubungan karakteristik pria dewasa dengan biomarker sindroma metabolik. Jurnal Gizi Pangan 2017; 12 (2): p. 79-84.
10. Anuurad E, Shiwaku K, Nogi A, Kitajima K, Enkhmaa B, Shimono K, Yamane Y. The New BMI Criteria for Asians by the Region of WHO are Suitable for Screening of Overweight to Prevent Metabolic Syndrome in Elder Japanese Workers. Journal of Occupational Health 2003; 45: p. 335-343.
11. Tuvdendorj D, Munoz AO, Ruiz-Barros V, Schwarz JM, Montalto G, Chandalia M, Sowers LC, Rizzo M, Murphy EJ, Abate N. In vivo triglycerides synthesis in subcutaneous adipose tissue of human correlates with plasma HDL parameters. Journal of Atherosclerosis 2016; 251: p. 147-152.
12. Sajuthi SP, Sharma NK, Comeau ME, Chou JF, Bowden DW, Freedman BI, Langefeld CD, Parks JS, Das SK. Genetic regulation of adipose tissue transcript expression is involved in modulating serum triglycerides and HDL cholesterol. Gene 2007; 632: p. 50-58.
13. Chinedu SN, Ogunlana OO, Azuh DE, Iweala EEJ, Afolabi IS, Uhuegbu CC, Idachaba ME, Osamor VC. Correlation between body mass index and waist circumference in Nigerian adults: implication as indicators of health status. Journal of Public Health Research 2013; 2.
14. Canadian Diabetes Association. Managing weight & diabetes: Body Mass Index and Waist Circumference. Canada: Canada Diabetes Association 2013.
15. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk evidence in support of current national institutes of health guideline. America: American Medical Association; 2002.
16. Allison H, Christian, Mochari H, Mosca LJ. Waist Circumference, Body Mass Index, and Their Association With Cardiometabolic and Global Risk. J Cardiometab Syndr 2009.
17. Paniagua L, Lohsoonthorn V, Lertmaharit S, Jiamjarasrangsi W, Williams MA. Comparison of waist circumference, body mass index, percent body fat and other measure of adiposity in identifying cardiovascular disease risks among thai adult. Obes Res Clin Pract 2008. 2(3): p. 215–223.
18. Dua S, Bhuker M, Sharma P, Dhall M, and Kapoor S. Body Mass Index Relates to Blood Pressure Among Adults. Journal Med Sci 2014. 6(2): p. 89–95.
19. Zhou Z, Hu D, Chen J. Association between obesity indices and blood pressure or hypertension: which index is the best? Journal Public Health Nutr 2008; 12 (8): p. 1061–1071.
20. Roka R, Michimi A, Macy G. Associations between hypertension and body mass index and waist circumference in U.S. adults: a comparative analysis by gender. Journal of High Blood Press Cardiovascular Prevention 2015; 22 (3): p. 265–273.
21. Kaur J. A Comprehensive Review on Metabolic Syndrome. Journal of Cardiology Research and Practice 2014.
- Abstract viewed - 907 times
- PDF downloaded - 1140 times
Downloads
Affiliations
Yovita Puri Subardjo
Universitas Jenderal Soedirman
Friska Citra Agustia
Universitas Jenderal Soedirman
Gumintang Ratna Ramadhan
Universitas Jenderal Soedirman
Dika Betaditya
Universitas Jenderal Soedirman
Afina Rahma Sulistyaning
Universitas Jenderal Soedirman
Widya Ayu Kurnia Putri
Universitas Jenderal Soedirman
How to Cite
Indeks Massa Tubuh dan Profil Sindroma Metabolik Masyarakat Usia Produktif di Posbindu Penyakit Tidak Menular (PTM) Kabupaten Banyumas
- Yovita Puri Subardjo ,
- Friska Citra Agustia ,
- Gumintang Ratna Ramadhan ,
- Dika Betaditya ,
- Afina Rahma Sulistyaning ,
- Widya Ayu Kurnia Putri
Vol 20 No 1 (2018): Vol 20 No 1 (2018): Maret 2018
Submitted: Apr 22, 2019
Published: Mar 1, 2018
Abstract
Tujuan : Penelitian ini bertujuan untuk melaporkan kaitan IMT dengan profil sindroma metabolik sebagai prediktor penyakit tidak menular pada masyarakat usia produktif Posbindu Kabupaten Banyumas. Metode : Penelitian ini merupakan penelitian observasional dengan desain penelitian potong lintang. Pengambilan data dilakukan pada bulan Mei 2017 dengan mengambil data variabel bebas yaitu Indeks Massa Tubuh (IMT) dan variabel tergantung yaitu profil sindroma metabolik yaitu HDL, lingkar perut, tekanan darah, gula darah, dan trigliserida. Sejumlah 107 subjek berusia 15-64 tahun dari 2 Posbindu PTM di Banyumas dikaji data demografis, Indeks Massa Tubuh (IMT) dan hubungannya dengan profil sindroma metabolik dengan analisis korelasi Pearson. Hasil : IMT berhubungan dengan beberapa profil sindroma metabolik yaitu berhubungan negatif dengan HDL (P=0,006) dan berhubungan positif dengan trigliserida (P=0,016), tekanan darah diastolik (P=0,002), dan lingkar perut (P=0,000); namun tidak ditemukan hubungan signifikan antara IMT dengan gula darah puasa (P=0,968) dan tekanan darah sistolik (P=0,064). IMT memiliki hubungan dengan beberapa profil sindroma metabolik (HDL, trigliserida, tekanan darah diastolik dan lingkar perut). Kesimpulan : Posbindu dapat menggunakan IMT sebagai parameter untuk meningkatkan kewaspadaan pesertanya terhadap risiko penyakit tidak menular seperti Penyakit Jantung Koroner dan Stroke.